We prove well-posedness for general linear wave- and diffusion equations on compact or non-compact metric graphs allowing various condi- tions in the vertices. More precisely, using the theory of strongly continuous operator semigroups we show that a large class of (not necessarily self-adjoint) second order differential operators with general (possibly non-local) bound- ary conditions generate cosine families, hence also analytic semigroups, on L^p (R + , C ` ) × L^p ([0, 1], C m ) for 1 ≤ p < +∞.

WAVES AND DIFFUSION ON METRIC GRAPHS WITH GENERAL VERTEX CONDITIONS

Klaus-Jochen Engel
;
2019-01-01

Abstract

We prove well-posedness for general linear wave- and diffusion equations on compact or non-compact metric graphs allowing various condi- tions in the vertices. More precisely, using the theory of strongly continuous operator semigroups we show that a large class of (not necessarily self-adjoint) second order differential operators with general (possibly non-local) bound- ary conditions generate cosine families, hence also analytic semigroups, on L^p (R + , C ` ) × L^p ([0, 1], C m ) for 1 ≤ p < +∞.
File in questo prodotto:
File Dimensione Formato  
Waves-Diff-EECT-19.pdf

non disponibili

Descrizione: Versione finale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 491.73 kB
Formato Adobe PDF
491.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/128389
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact