We investigate the existence of weak type solutions for a class of aggregation–diffusion PDEs with nonlinear mobility obtained as large particle limit of a suitable nonlocal version of the follow-the-leader scheme, which is interpreted as the discrete Lagrangian approximation of the target continuity equation. We restrict the analysis to bounded, non-negative initial data with bounded variation and away from vacuum, supported in a closed interval with zero-velocity boundary conditions. The main novelties of this work concern the presence of a nonlinear mobility term and the non-strict monotonicity of the diffusion function. As a consequence, our result applies also to strongly degenerate diffusion equations. The results are complemented with some numerical simulations.
Solutions to aggregation-diffusion equations with nonlinear mobility constructed via a deterministic particle approximation
Simone Fagioli;RADICI, EMANUELA
2018-01-01
Abstract
We investigate the existence of weak type solutions for a class of aggregation–diffusion PDEs with nonlinear mobility obtained as large particle limit of a suitable nonlocal version of the follow-the-leader scheme, which is interpreted as the discrete Lagrangian approximation of the target continuity equation. We restrict the analysis to bounded, non-negative initial data with bounded variation and away from vacuum, supported in a closed interval with zero-velocity boundary conditions. The main novelties of this work concern the presence of a nonlinear mobility term and the non-strict monotonicity of the diffusion function. As a consequence, our result applies also to strongly degenerate diffusion equations. The results are complemented with some numerical simulations.File | Dimensione | Formato | |
---|---|---|---|
1801.10114.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
918.31 kB
Formato
Adobe PDF
|
918.31 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.