If P(t) is the semigroup asssociated with the Kawasaki dynamics on Z(d) and f is a local function on the configuration space, then the variance with respect to the invariant measure mu of P(t)f goes to zero as t --> infinity faster than the t(-d/2+epsilon), with epsilon arbitrarily small. The fundamental assumption is a mixing condition on the interaction of Dobrushin and Schlosman type.

Diffusive long-time behavior of Kawasaki dynamics

CANCRINI, NICOLETTA;
2005-01-01

Abstract

If P(t) is the semigroup asssociated with the Kawasaki dynamics on Z(d) and f is a local function on the configuration space, then the variance with respect to the invariant measure mu of P(t)f goes to zero as t --> infinity faster than the t(-d/2+epsilon), with epsilon arbitrarily small. The fundamental assumption is a mixing condition on the interaction of Dobrushin and Schlosman type.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/13100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact