If P(t) is the semigroup asssociated with the Kawasaki dynamics on Z(d) and f is a local function on the configuration space, then the variance with respect to the invariant measure mu of P(t)f goes to zero as t --> infinity faster than the t(-d/2+epsilon), with epsilon arbitrarily small. The fundamental assumption is a mixing condition on the interaction of Dobrushin and Schlosman type.
Titolo: | Diffusive long-time behavior of Kawasaki dynamics | |
Autori: | ||
Data di pubblicazione: | 2005 | |
Rivista: | ||
Abstract: | If P(t) is the semigroup asssociated with the Kawasaki dynamics on Z(d) and f is a local function on the configuration space, then the variance with respect to the invariant measure mu of P(t)f goes to zero as t --> infinity faster than the t(-d/2+epsilon), with epsilon arbitrarily small. The fundamental assumption is a mixing condition on the interaction of Dobrushin and Schlosman type. | |
Handle: | http://hdl.handle.net/11697/13100 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.