We study the homogenization and singular perturbation of the wave equation in a periodic media for long times of the order of the inverse of the period. We consider initial data that are Bloch wave packets, i.e., that are the product of a fast oscillating Bloch wave and of a smooth envelope function. We prove that the solution is approximately equal to two waves propagating in opposite directions at a high group velocity with envelope functions which obey a Schr\"{o}dinger type equation. Our analysis extends the usual WKB approximation by adding a dispersive, or diffractive, effect due to the non uniformity of the group velocity which yields the dispersion tensor of the homogenized Schr\"{o}dinger equation.

Diffractive behavior of the wave equation in periodic media: weak convergence analysis

PALOMBARO, MARIAPIA;
2009

Abstract

We study the homogenization and singular perturbation of the wave equation in a periodic media for long times of the order of the inverse of the period. We consider initial data that are Bloch wave packets, i.e., that are the product of a fast oscillating Bloch wave and of a smooth envelope function. We prove that the solution is approximately equal to two waves propagating in opposite directions at a high group velocity with envelope functions which obey a Schr\"{o}dinger type equation. Our analysis extends the usual WKB approximation by adding a dispersive, or diffractive, effect due to the non uniformity of the group velocity which yields the dispersion tensor of the homogenized Schr\"{o}dinger equation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/13128
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact