Injection of cell-laden scaffolds in the form of mesoscopic particles directly to the site of treatment is one of the most promising approaches to tissue regeneration. Here, a novel and highly efficient method is presented for preparation of porous microbeads of tailorable dimensions (in the range ≈300–1500 mm) and with a uniform and fully interconnected internal porous texture. The method starts with generation of a monodisperse oil-in-water emulsion inside a flow-focusing microfluidic device. This emulsion is later broken-up, with the use of electric field, into mesoscopic double droplets, that in turn serve as a template for the porous microbeads. By tuning the amplitude and frequency of the electric pulses, the template droplets and the resulting porous bead scaffolds are precisely produced. Furthermore, a model of pulsed electrodripping is proposed that predicts the size of the template droplets as a function of the applied voltage. To prove the potential of the porous microbeads as cell carries, they are tested with human mesenchymal stem cells and hepatic cells, with their viability and degree of microbead colonization being monitored. Finally, the presented porous microbeads are benchmarked against conventional microparticles with nonhomogenous internal texture, revealing their superior performance.

Electric field assisted microfluidic platform for synthesis of tailorable porous microbeads as cell carriers for tissue engineering

Massimi M;
2018

Abstract

Injection of cell-laden scaffolds in the form of mesoscopic particles directly to the site of treatment is one of the most promising approaches to tissue regeneration. Here, a novel and highly efficient method is presented for preparation of porous microbeads of tailorable dimensions (in the range ≈300–1500 mm) and with a uniform and fully interconnected internal porous texture. The method starts with generation of a monodisperse oil-in-water emulsion inside a flow-focusing microfluidic device. This emulsion is later broken-up, with the use of electric field, into mesoscopic double droplets, that in turn serve as a template for the porous microbeads. By tuning the amplitude and frequency of the electric pulses, the template droplets and the resulting porous bead scaffolds are precisely produced. Furthermore, a model of pulsed electrodripping is proposed that predicts the size of the template droplets as a function of the applied voltage. To prove the potential of the porous microbeads as cell carries, they are tested with human mesenchymal stem cells and hepatic cells, with their viability and degree of microbead colonization being monitored. Finally, the presented porous microbeads are benchmarked against conventional microparticles with nonhomogenous internal texture, revealing their superior performance.
File in questo prodotto:
File Dimensione Formato  
adfm_2018.pdf

solo utenti autorizzati

Descrizione: articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/131375
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 21
social impact