Folding propensities of bombinins H2 and H4, two members of amphibian bombinins H, a family of 17–20 residue a-helical peptides, have been investigated by means of circular dichroism (CD) measurements and molecular dynamics (MD) simulations. The two peptides, with primary structure IIGPVLGLVGSALGGLLKKINH2 and differing only for the configuration of the second aminoacid (an L-isoleucine in H2 and a D-alloisoleucine in H4) behave rather differently in solution. In particular both CD measurements and MD simulations indicate that bombinin H2 shows a markedly higher tendency to fold. From a careful inspection of MD trajectories it emerges that the stereochemical isomerization mutation of residue 2 to D-alloisoleucine in H4 peptide, drastically decreases its ability to form intrapeptide contacts. MD simulations also indicate that the conformational sampling in both systems derives from a subtle combination of energetic and entropic effects both involving the peptide itself and the solvent. The present results have been finally paralleled with preliminary information on bombinins H2 and H4 biological activity, i.e. interaction with membrane, supporting the hypothesis of an ‘‘already folded’’ conformation in water rather than interfacial folding tenet. # 2008 Wiley Periodicals, Inc. Biopolymers 89: 769–778, 2008.

Folding propensity and biological activity of peptides: The effect of a single stereochemical isomerization on the conformational properties of bombinins in aqueous solution

BOZZI, Argante;ASCHI, MASSIMILIANO
2008-01-01

Abstract

Folding propensities of bombinins H2 and H4, two members of amphibian bombinins H, a family of 17–20 residue a-helical peptides, have been investigated by means of circular dichroism (CD) measurements and molecular dynamics (MD) simulations. The two peptides, with primary structure IIGPVLGLVGSALGGLLKKINH2 and differing only for the configuration of the second aminoacid (an L-isoleucine in H2 and a D-alloisoleucine in H4) behave rather differently in solution. In particular both CD measurements and MD simulations indicate that bombinin H2 shows a markedly higher tendency to fold. From a careful inspection of MD trajectories it emerges that the stereochemical isomerization mutation of residue 2 to D-alloisoleucine in H4 peptide, drastically decreases its ability to form intrapeptide contacts. MD simulations also indicate that the conformational sampling in both systems derives from a subtle combination of energetic and entropic effects both involving the peptide itself and the solvent. The present results have been finally paralleled with preliminary information on bombinins H2 and H4 biological activity, i.e. interaction with membrane, supporting the hypothesis of an ‘‘already folded’’ conformation in water rather than interfacial folding tenet. # 2008 Wiley Periodicals, Inc. Biopolymers 89: 769–778, 2008.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/13192
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact