In this paper we propose a generalization of the hybrid model for semiconductors already discussed by Chiarelli et al.and Di Michele et al., including a non-constant pressure functional and relaxation time. Roughly speaking, we assume that the normalized electron temperature and the relaxation time in the classical and quantum domains are different from each other. We derive the model heuristically, introducing a generalization of the stress tensor, which accounts for an interface contribute, and afterwards we prove the existence and uniqueness of weak solutions for such a new hybrid model. We apply the approach proposed by Di Michele et al. to obtain the stationary solutions to our problem, namely we prove the existence of the solution for a regularized problem, then we achieve the existence of a weak solution for the hybrid problem as a proper limit of the regular solution previously obtained.
Stationary solutions for a new hybrid quantum model for semiconductors with discontinuous pressure functional and relaxation time
Di Michele, Federica;Rubino, Bruno
;Sampalmieri, Rosella
2019-01-01
Abstract
In this paper we propose a generalization of the hybrid model for semiconductors already discussed by Chiarelli et al.and Di Michele et al., including a non-constant pressure functional and relaxation time. Roughly speaking, we assume that the normalized electron temperature and the relaxation time in the classical and quantum domains are different from each other. We derive the model heuristically, introducing a generalization of the stress tensor, which accounts for an interface contribute, and afterwards we prove the existence and uniqueness of weak solutions for such a new hybrid model. We apply the approach proposed by Di Michele et al. to obtain the stationary solutions to our problem, namely we prove the existence of the solution for a regularized problem, then we achieve the existence of a weak solution for the hybrid problem as a proper limit of the regular solution previously obtained.File | Dimensione | Formato | |
---|---|---|---|
preprint-MMS-2018.pdf
solo utenti autorizzati
Descrizione: Articolo su rivista internazionale
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
567.27 kB
Formato
Adobe PDF
|
567.27 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.