In this paper, we show that any smooth subvariety of codimension two in G(1,4) (the Grassmannian of lines of P-4) of degree at most 25 is subcanonical. Analogously, we prove that smooth subvarieties of codimension two in G(1,4) that are not of general type have degree <= 32 and we classify all of them. In both classifications, any subvariety in the final list is either a complete intersection or the zero locus of a section of a twist of the rank-two universal bundle on G(1,4).

Evidence to subcanonicity of codimension two subvarieties of G(1,4)

FANIA, Maria Lucia
2006

Abstract

In this paper, we show that any smooth subvariety of codimension two in G(1,4) (the Grassmannian of lines of P-4) of degree at most 25 is subcanonical. Analogously, we prove that smooth subvarieties of codimension two in G(1,4) that are not of general type have degree <= 32 and we classify all of them. In both classifications, any subvariety in the final list is either a complete intersection or the zero locus of a section of a twist of the rank-two universal bundle on G(1,4).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/13241
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact