The paper provides a spectral collocation numerical scheme for the approximation of the solutions of stochastic fractional differential equations. The discretization of the operator leads to a system of nonlinear algebraic equations, whose coefficient matrix can be computed by an automatic procedure, consisting of linear steps. A selection of numerical experiments confirming the effectiveness of the approach is given, with respect to various sets of function bases and of collocation points.

A spectral method for stochastic fractional differential equations

D'Ambrosio, Raffaele;
2019-01-01

Abstract

The paper provides a spectral collocation numerical scheme for the approximation of the solutions of stochastic fractional differential equations. The discretization of the operator leads to a system of nonlinear algebraic equations, whose coefficient matrix can be computed by an automatic procedure, consisting of linear steps. A selection of numerical experiments confirming the effectiveness of the approach is given, with respect to various sets of function bases and of collocation points.
File in questo prodotto:
File Dimensione Formato  
spectral.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 222.45 kB
Formato Adobe PDF
222.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/132461
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 23
social impact