Systemic sclerosis (SSc) is characterized by microangiopathy with impaired reparative angiogenesis and fibrosis. Epidermal Growth Factor Like-domain 7 (EGFL7), firstly described in endothelial cells plays a pivotal role in angiogenesis. Fibroblasts (FBs) are involved in vascular remodeling, under physiological and pathological conditions. In this study, we investigated: (i) the expression of EGFL7 and its miR-126 in patients affected by diffuse cutaneous SSc (dcSSc); (ii) the ability of Transforming Growth Factor-beta (TGF-β) to modulate EGFL7 expression; (iii) the ability of EGFL7 to modulate COL1A1 expression and proliferation/migration, and (iv) the functional role of EGFL7 on angiogenesis. Patients were divided in 2 subsets: patients fulfilling the classification criteria in less than one year from Raynaud’s Phenomenon onset (Early Onset Subset–EOS), and all the others (Long Standing Subset–LSS). We show that EGFL7 expression is increased in EOS dcSSc skin and cultured FBs. EGFL7 is inducible by TGF-β on Healthy Controls (HC) FBs but not in SSc-FBs. EGFL7 decreases COL1A1 expression in EOS SSc-FBs while EGFL7 silencing up-regulates COL1A1 expression. EGFL7 promotes migration/invasion of EOS SSc-FBs but not proliferation. Finally, SSc-FBs, partially inhibit angiogenesis in organotypic coculture assays, and this is reversed by treatment with human recombinant (rh)EGFL7. We conclude that EGFL7 and its specific microRNA miR-126 may be involved in the pathogenesis of SSc vasculopathy and fibrosis.

Epidermal Growth Factor Like-domain 7 and miR-126 are abnormally expressed in diffuse Systemic Sclerosis fibroblasts

Liakouli, Vasiliki;Cipriani, Paola;Di Benedetto, Paola;Ruscitti, Piero;Giacomelli, Roberto
2019-01-01

Abstract

Systemic sclerosis (SSc) is characterized by microangiopathy with impaired reparative angiogenesis and fibrosis. Epidermal Growth Factor Like-domain 7 (EGFL7), firstly described in endothelial cells plays a pivotal role in angiogenesis. Fibroblasts (FBs) are involved in vascular remodeling, under physiological and pathological conditions. In this study, we investigated: (i) the expression of EGFL7 and its miR-126 in patients affected by diffuse cutaneous SSc (dcSSc); (ii) the ability of Transforming Growth Factor-beta (TGF-β) to modulate EGFL7 expression; (iii) the ability of EGFL7 to modulate COL1A1 expression and proliferation/migration, and (iv) the functional role of EGFL7 on angiogenesis. Patients were divided in 2 subsets: patients fulfilling the classification criteria in less than one year from Raynaud’s Phenomenon onset (Early Onset Subset–EOS), and all the others (Long Standing Subset–LSS). We show that EGFL7 expression is increased in EOS dcSSc skin and cultured FBs. EGFL7 is inducible by TGF-β on Healthy Controls (HC) FBs but not in SSc-FBs. EGFL7 decreases COL1A1 expression in EOS SSc-FBs while EGFL7 silencing up-regulates COL1A1 expression. EGFL7 promotes migration/invasion of EOS SSc-FBs but not proliferation. Finally, SSc-FBs, partially inhibit angiogenesis in organotypic coculture assays, and this is reversed by treatment with human recombinant (rh)EGFL7. We conclude that EGFL7 and its specific microRNA miR-126 may be involved in the pathogenesis of SSc vasculopathy and fibrosis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/132948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact