A point P not on a non-degenerate conic C in PG(2, q), q odd, is called internal to C if no tangent line to C contains P, external otherwise. The set of internal points of C is a [q(q−1)/2] -set of type (0, (q−1)/2 , (q+1)/2). In this paper, we classify all [q(q−1)/2]-sets of class [0, m, n] having exactly two kinds of outer points.

A characterization of the set of internal points of a conic in PG(2,q), q odd

Innamorati, Stefano;Zuanni, Fulvio
2019-01-01

Abstract

A point P not on a non-degenerate conic C in PG(2, q), q odd, is called internal to C if no tangent line to C contains P, external otherwise. The set of internal points of C is a [q(q−1)/2] -set of type (0, (q−1)/2 , (q+1)/2). In this paper, we classify all [q(q−1)/2]-sets of class [0, m, n] having exactly two kinds of outer points.
File in questo prodotto:
File Dimensione Formato  
2019_InnamoratiZuanni.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 144.74 kB
Formato Adobe PDF
144.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/133206
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact