Let $H$ be a subgraph of $G$. An $H$-design $(X,{\Cal C})$ of order $v- w$, $0\le w\le v$, and index $\mu$ is embedded into a $G$-design $(V,{\Cal B})$ of order $v$ and index $\lambda$, if $\mu\le\lambda$, $X\subseteq V$ and there is an injective mapping $f:{\Cal C}\to{\Cal B}$ such that $B$ is subgraph of $f(B)$ for every $B\in{\Cal C}$. For every pair of positive integers $v$, $\lambda$, we determine the minimum value of $w$ such that there exists a balanced incomplete block design of order $v$, index $\lambda\ge 2$ and block-size 4 which embeds a $K_3$-design of order $v- w$, $0\le w\le v$, and index $\mu= 1$.

On the existence of an S_lambda(2,4,v) which embeds an S(2,3,v-w) of maximum order for lambda\ge 2.

Abstract

Let $H$ be a subgraph of $G$. An $H$-design $(X,{\Cal C})$ of order $v- w$, $0\le w\le v$, and index $\mu$ is embedded into a $G$-design $(V,{\Cal B})$ of order $v$ and index $\lambda$, if $\mu\le\lambda$, $X\subseteq V$ and there is an injective mapping $f:{\Cal C}\to{\Cal B}$ such that $B$ is subgraph of $f(B)$ for every $B\in{\Cal C}$. For every pair of positive integers $v$, $\lambda$, we determine the minimum value of $w$ such that there exists a balanced incomplete block design of order $v$, index $\lambda\ge 2$ and block-size 4 which embeds a $K_3$-design of order $v- w$, $0\le w\le v$, and index $\mu= 1$.
Scheda breve Scheda completa Scheda completa (DC)
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/13330
• ND
• ND
• ND