The phase diagram of correlated systems like cuprate or pnictide high-temperature superconductors is likely defined by a topological change of the Fermi surface under continuous variation of an external parameter, the so-called Lifshitz transition. However, a number of low-temperature instabilities and the interplay of multiple energy scales complicate the study of this phenomenon. Here we identify the optical signatures of a pressure-induced Lifshitz transition in a clean elemental system, black phosphorus. By applying external pressures above 1.5 GPa, we observe a change in the pressure-dependent Drude plasma frequency due to the appearance of massless Dirac fermions. At higher pressures, optical signatures of two structural phase transitions are also identified. Our findings suggest that a key fingerprint of the Lifshitz transition, in the absence of structural transitions, is a Drude plasma frequency discontinuity due to a change in the Fermi surface topology.

Emergent Dirac carriers across a pressure-induced Lifshitz transition in black phosphorus

Profeta, G.
Membro del Collaboration Group
;
2018-01-01

Abstract

The phase diagram of correlated systems like cuprate or pnictide high-temperature superconductors is likely defined by a topological change of the Fermi surface under continuous variation of an external parameter, the so-called Lifshitz transition. However, a number of low-temperature instabilities and the interplay of multiple energy scales complicate the study of this phenomenon. Here we identify the optical signatures of a pressure-induced Lifshitz transition in a clean elemental system, black phosphorus. By applying external pressures above 1.5 GPa, we observe a change in the pressure-dependent Drude plasma frequency due to the appearance of massless Dirac fermions. At higher pressures, optical signatures of two structural phase transitions are also identified. Our findings suggest that a key fingerprint of the Lifshitz transition, in the absence of structural transitions, is a Drude plasma frequency discontinuity due to a change in the Fermi surface topology.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/133546
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact