Every year the oil refining industry consumes thousand tons of fluid catalytic cracking zeolite from the E-cat generated in the fluid catalytic cracking (FCC) unit. In the present paper, a new process for recycling of fluid catalytic cracking catalysts (FCCCs) is presented. The process, previously tested at laboratory scale, was simulated by SuperPro Designer catalysts (FCCCs, also known as equilibrium catalysts, E-cat), which are mainly landfilled. Their intrinsic value is quite low and the content of rare earth elements (REEs), as lanthanum and cerium oxides, is around 3%wt. Moreover, their reuse in other industrial processes as raw material is very scarce. For each metric ton of spent FCCC treated for recovery of REEs, nearly the same amount of waste is generated from the process, the majority of which is represented by the solid residue resulting from the leaching stage. The manuscript presents a technological study and an economic analysis for the recovery of REEs, as well as the production of synthetic. © software package. The plant was designed for a capacity of 4000 metric tons per year. The discounted cash flow (DCF) method was applied and Net Present Value (NPV) equal to about two-million € and Discounted Payback Time (DPBT) equal to two years defined the profitability of the process for recycling of FCCCs. This result depends on the selling price of zeolite. Consequently, a break-even point (BEP) analysis was conducted on this critical variable and the condition of economic feasibility was verified with a price of 1070 €/ton. This study tried to implement recycling strategies towards circular economy models.

Spent FCC E-Cat: Towards a circular approach in the oil refining industry

Ferella, Francesco
;
Innocenzi, Valentina;De Michelis, Ida;Vegliò, Francesco
2019-01-01

Abstract

Every year the oil refining industry consumes thousand tons of fluid catalytic cracking zeolite from the E-cat generated in the fluid catalytic cracking (FCC) unit. In the present paper, a new process for recycling of fluid catalytic cracking catalysts (FCCCs) is presented. The process, previously tested at laboratory scale, was simulated by SuperPro Designer catalysts (FCCCs, also known as equilibrium catalysts, E-cat), which are mainly landfilled. Their intrinsic value is quite low and the content of rare earth elements (REEs), as lanthanum and cerium oxides, is around 3%wt. Moreover, their reuse in other industrial processes as raw material is very scarce. For each metric ton of spent FCCC treated for recovery of REEs, nearly the same amount of waste is generated from the process, the majority of which is represented by the solid residue resulting from the leaching stage. The manuscript presents a technological study and an economic analysis for the recovery of REEs, as well as the production of synthetic. © software package. The plant was designed for a capacity of 4000 metric tons per year. The discounted cash flow (DCF) method was applied and Net Present Value (NPV) equal to about two-million € and Discounted Payback Time (DPBT) equal to two years defined the profitability of the process for recycling of FCCCs. This result depends on the selling price of zeolite. Consequently, a break-even point (BEP) analysis was conducted on this critical variable and the condition of economic feasibility was verified with a price of 1070 €/ton. This study tried to implement recycling strategies towards circular economy models.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/133794
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 29
social impact