In this paper we present a numerical study of some variations of the Hughes model for pedestrian flow under different types of congestion effects. The general model consists of a coupled non-linear PDE system involving an eikonal equation and a first order conservation law, and it intends to approximate the flow of a large pedestrian group aiming to reach a target as fast as possible, while taking into account the congestion of the crowd. We propose an efficient semi-Lagrangian scheme (SL) to approximate the solution of the PDE system and we investigate the macroscopic effects of different penalization functions modelling the congestion phenomena.
The Hughes model for pedestrian dynamics and congestion modelling
Festa, Adriano
Membro del Collaboration Group
;
2017-01-01
Abstract
In this paper we present a numerical study of some variations of the Hughes model for pedestrian flow under different types of congestion effects. The general model consists of a coupled non-linear PDE system involving an eikonal equation and a first order conservation law, and it intends to approximate the flow of a large pedestrian group aiming to reach a target as fast as possible, while taking into account the congestion of the crowd. We propose an efficient semi-Lagrangian scheme (SL) to approximate the solution of the PDE system and we investigate the macroscopic effects of different penalization functions modelling the congestion phenomena.File | Dimensione | Formato | |
---|---|---|---|
1611.06848.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
451.99 kB
Formato
Adobe PDF
|
451.99 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.