Vortex-Induced Vibration (VIV) is one of the most demanding areas in the offshore industry, and detailed investigation of the fluid-structure interaction is becoming fundamental for designing new structures able to reduce VIV phenomenon. To carry on such analysis, and get reliable results in term of global coefficients, the correct modelling of turbulence, boundary layer, and separated flows is required. Nonetheless, the more accurate is the simulation, the more costly is the computation. Unsteady RANS simulations provide a good trade-off between numerical accuracy and computational time. This paper presents the analysis of the flow past a cylinder with several three-dimensional helical fins at high Reynolds number. Flow field, vortical structures, and response frequency patterns are analysed. Spectral analysis of data is performed to identify carrier frequencies, deemed to be critical due to the induced vibration of the whole structure. Finally, helical strakes efficiency in reducing the riser vibrations is also addressed, through direct consideration on the carrier shedding frequency.
Vortex suppression efficiency of discontinuous helicoidal fins
Di Mascio A.;
2007-01-01
Abstract
Vortex-Induced Vibration (VIV) is one of the most demanding areas in the offshore industry, and detailed investigation of the fluid-structure interaction is becoming fundamental for designing new structures able to reduce VIV phenomenon. To carry on such analysis, and get reliable results in term of global coefficients, the correct modelling of turbulence, boundary layer, and separated flows is required. Nonetheless, the more accurate is the simulation, the more costly is the computation. Unsteady RANS simulations provide a good trade-off between numerical accuracy and computational time. This paper presents the analysis of the flow past a cylinder with several three-dimensional helical fins at high Reynolds number. Flow field, vortical structures, and response frequency patterns are analysed. Spectral analysis of data is performed to identify carrier frequencies, deemed to be critical due to the induced vibration of the whole structure. Finally, helical strakes efficiency in reducing the riser vibrations is also addressed, through direct consideration on the carrier shedding frequency.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.