Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
Aims: Classification of acute heart failure (AHF) patients into four clinical profiles defined by evidence of congestion and perfusion is advocated by the 2016 European Society of Cardiology (ESC)guidelines. Based on the ESC-EORP-HFA Heart Failure Long-Term Registry, we compared differences in baseline characteristics, in-hospital management and outcomes among congestion/perfusion profiles using this classification. Methods and results: We included 7865 AHF patients classified at admission as: ‘dry-warm’ (9.9%), ‘wet-warm’ (69.9%), ‘wet-cold’ (19.8%) and ‘dry-cold’ (0.4%). These groups differed significantly in terms of baseline characteristics, in-hospital management and outcomes. In-hospital mortality was 2.0% in ‘dry-warm’, 3.8% in ‘wet-warm’, 9.1% in ‘dry-cold’ and 12.1% in ‘wet-cold’ patients. Based on clinical classification at admission, the adjusted hazard ratios (95% confidence interval) for 1-year mortality were: ‘wet-warm’ vs. ‘dry-warm’ 1.78 (1.43–2.21) and ‘wet-cold’ vs. ‘wet-warm’ 1.33 (1.19–1.48). For profiles resulting from discharge classification, the adjusted hazard ratios (95% confidence interval) for 1-year mortality were: ‘wet-warm’ vs. ‘dry-warm’ 1.46 (1.31–1.63) and ‘wet-cold’ vs. ‘wet-warm’ 2.20 (1.89–2.56). Among patients discharged alive, 30.9% had residual congestion, and these patients had higher 1-year mortality compared to patients discharged without congestion (28.0 vs. 18.5%). Tricuspid regurgitation, diabetes, anaemia and high New York Heart Association class were independently associated with higher risk of congestion at discharge, while beta-blockers at admission, de novo heart failure, or any cardiovascular procedure during hospitalization were associated with lower risk of residual congestion. Conclusion: Classification based on congestion/perfusion status provides clinically relevant information at hospital admission and discharge. A better understanding of the clinical course of the two entities could play an important role towards the implementation of targeted strategies that may improve outcomes.
Acute heart failure congestion and perfusion status – impact of the clinical classification on in-hospital and long-term outcomes; insights from the ESC-EORP-HFA Heart Failure Long-Term Registry
Chioncel O.;Mebazaa A.;Maggioni A. P.;Harjola V. -P.;Rosano G.;Laroche C.;Piepoli M. F.;Crespo-Leiro M. G.;Lainscak M.;Ponikowski P.;Filippatos G.;Ruschitzka F.;Seferovic P.;Coats A. J. S.;Lund L. H.;Auer J.;Ablasser K.;Fruhwald F.;Dolze T.;Brandner K.;Gstrein S.;Poelzl G.;Moertl D.;Reiter S.;Podczeck-Schweighofer A.;Muslibegovic A.;Vasilj M.;Fazlibegovic E.;Cesko M.;Zelenika D.;Palic B.;Pravdic D.;Cuk D.;Vitlianova K.;Katova T.;Velikov T.;Kurteva T.;Gatzov P.;Kamenova D.;Antova M.;Sirakova V.;Krejci J.;Mikolaskova M.;Spinar J.;Krupicka J.;Malek F.;Hegarova M.;Lazarova M.;Monhart Z.;Hassanein M.;Sobhy M.;El Messiry F.;El Shazly A. H.;Elrakshy Y.;Youssef A.;Moneim A. A.;Noamany M.;Reda A.;Dayem T. K. A.;Farag N.;Halawa S. I.;Hamid M. A.;Said K.;Saleh A.;Ebeid H.;Hanna R.;Aziz R.;Louis O.;Enen M. A.;Ibrahim B. S.;Nasr G.;Elbahry A.;Sobhy H.;Ashmawy M.;Gouda M.;Aboleineen W.;Bernard Y.;Luporsi P.;Meneveau N.;Pillot M.;Morel M.;Seronde M. -F.;Schiele F.;Briand F.;Delahaye F.;Damy T.;Eicher J. -C.;de Groote P.;Fertin M.;Lamblin N.;Isnard R.;Lefol C.;Thevenin S.;Hagege A.;Jondeau G.;Logeart D.;Le Marcis V.;Ly J. -F.;Coisne D.;Lequeux B.;Le Moal V.;Mascle S.;Lotton P.;Behar N.;Donal E.;Thebault C.;Ridard C.;Reynaud A.;Basquin A.;Bauer F.;Codjia R.;Galinier M.;Tourikis P.;Stavroula M.;Tousoulis D.;Stefanadis C.;Chrysohoou C.;Kotrogiannis I.;Matzaraki V.;Dimitroula T.;Karavidas A.;Tsitsinakis G.;Kapelios C.;Nanas J.;Kampouri H.;Nana E.;Kaldara E.;Eugenidou A.;Vardas P.;Saloustros I.;Patrianakos A.;Tsaknakis T.;Evangelou S.;Nikoloulis N.;Tziourganou H.;Tsaroucha A.;Papadopoulou A.;Douras A.;Polgar L.;Merkely B.;Kosztin A.;Nyolczas N.;Nagy A. C.;Halmosi R.;Elber J.;Alony I.;Shotan A.;Fuhrmann A. V.;Amir O.;Romano S.;Marcon S.;Penco M.;Di Mauro M.;Lemme E.;Carubelli V.;Rovetta R.;Metra M.;Bulgari M.;Quinzani F.;Lombardi C.;Bosi S.;Schiavina G.;Squeri A.;Barbieri A.;Di Tano G.;Pirelli S.;Ferrari R.;Fucili A.;Passero T.;Musio S.;Di Biase M.;Correale M.;Salvemini G.;Brognoli S.;Zanelli E.;Giordano A.;Agostoni P.;Italiano G.;Salvioni E.;Copelli S.;Modena M. G.;Reggianini L.;Valenti C.;Olaru A.;Bandino S.;Deidda M.;Mercuro G.;Dessalvi C. C.;Marino P. N.;Di Ruocco M. V.;Sartori C.;Piccinino C.;Parrinello G.;Licata G.;Torres D.;Giambanco S.;Busalacchi S.;Arrotti S.;Novo S.;Inciardi R. M.;Pieri P.;Chirco P. R.;Galifi M. A.;Teresi G.;Buccheri D.;Minacapelli A.;Veniani M.;Frisinghelli A.;Priori S. G.;Cattaneo S.;Opasich C.;Gualco A.;Pagliaro M.;Mancone M.;Fedele F.;Cinque A.;Vellini M.;Scarfo I.;Romeo F.;Ferraiuolo F.;Sergi D.;Anselmi M.;Melandri F.;Leci E.;Iori E.;Bovolo V.;Pidello S.;Frea S.;Bergerone S.;Botta M.;Canavosio F. G.;Gaita F.;Merlo M.;Cinquetti M.;Sinagra G.;Ramani F.;Fabris E.;Stolfo D.;Artico J.;Miani D.;Fresco C.;Daneluzzi C.;Proclemer A.;Cicoira M.;Zanolla L.;Marchese G.;Torelli F.;Vassanelli C.;Voronina N.;Erglis A.;Tamakauskas V.;Smalinskas V.;Karaliute R.;Petraskiene I.;Kazakauskaite E.;Rumbinaite E.;Kavoliuniene A.;Vysniauskas V.;Brazyte-Ramanauskiene R.;Petraskiene D.;Stankala S.;Switala P.;Juszczyk Z.;Sinkiewicz W.;Gilewski W.;Pietrzak J.;Orzel T.;Kasztelowicz P.;Kardaszewicz P.;Lazorko-Piega M.;Gabryel J.;Mosakowska K.;Bellwon J.;Rynkiewicz A.;Raczak G.;Lewicka E.;Dabrowska-Kugacka A.;Bartkowiak R.;Sosnowska-Pasiarska B.;Wozakowska-Kaplon B.;Krzeminski A.;Zabojszcz M.;Mirek-Bryniarska E.;Grzegorzko A.;Bury K.;Nessler J.;Zalewski J.;Furman A.;Broncel M.;Poliwczak A.;Bala A.;Zycinski P.;Rudzinska M.;Jankowski L.;Kasprzak J. D.;Michalak L.;Soska K. W.;Drozdz J.;Huziuk I.;Retwinski A.;Flis P.;Weglarz J.;Bodys A.;Grajek S.;Kaluzna-Oleksy M.;Straburzynska-Migaj E.;Dankowski R.;Szymanowska K.;Grabia J.;Szyszka A.;Nowicka A.;Samcik M.;Wolniewicz L.;Baczynska K.;Komorowska K.;Poprawa I.;Komorowska E.;Sajnaga D.;Zolbach A.;Dudzik-Plocica A.;Abdulkarim A. -F.;Lauko-Rachocka A.;Kaminski L.;Kostka A.;Cichy A.;Ruszkowski P.;Splawski M.;Fitas G.;Szymczyk A.;Serwicka A.;Fiega A.;Zysko D.;Krysiak W.;Szabowski S.;Skorek E.;Pruszczyk P.;Bienias P.;Ciurzynski M.;Welnicki M.;Mamcarz A.;Folga A.;Zielinski T.;Rywik T.;Leszek P.;Sobieszczanska-Malek M.;Piotrowska M.;Kozar-Kaminska K.;Komuda K.;Wisniewska J.;Tarnowska A.;Balsam P.;Marchel M.;Opolski G.;Kaplon-Cieslicka A.;Gil R. J.;Mozenska O.;Byczkowska K.;Gil K.;Pawlak A.;Michalek A.;Krzesinski P.;Piotrowicz K.;Uzieblo-Zyczkowska B.;Stanczyk A.;Skrobowski A.;Ponikowski P.;Jankowska E.;Rozentryt P.;Polonski L.;Gadula-Gacek E.;Nowalany-Kozielska E.;Kuczaj A.;Kalarus Z.;Szulik M.;Przybylska K.;Klys J.;Prokop-Lewicka G.;Kleinrok A.;Aguiar C. T.;Ventosa A.;Pereira S.;Faria R.;Chin J.;De Jesus I.;Santos R.;Silva P.;Moreno N.;Queiros C.;Lourenco C.;Pereira A.;Castro A.;Andrade A.;Guimaraes T. O.;Martins S.;Placido R.;Lima G.;Brito D.;Francisco A. R.;Cardiga R.;Proenca M.;Araujo I.;Marques F.;Fonseca C.;Moura B.;Leite S.;Campelo M.;Silva-Cardoso J.;Rodrigues J.;Rangel I.;Martins E.;Correia A. S.;Peres M.;Marta L.;da Silva G. F.;Severino D.;Durao D.;Leao S.;Magalhaes P.;Moreira I.;Cordeiro A. F.;Ferreira C.;Araujo C.;Ferreira A.;Baptista A.;Radoi M.;Bicescu G.;Vinereanu D.;Sinescu C. -J.;Macarie C.;Popescu R.;Daha I.;Dan G. -A.;Stanescu C.;Dan A.;Craiu E.;Nechita E.;Aursulesei V.;Christodorescu R.;Otasevic P.;Seferovic P. M.;Simeunovic D.;Ristic A. D.;Celic V.;Pavlovic-Kleut M.;Lazic J. S.;Stojcevski B.;Pencic B.;Stevanovic A.;Andric A.;Iric-Cupic V.;Jovic M.;Davidovic G.;Milanov S.;Mitic V.;Atanaskovic V.;Antic S.;Pavlovic M.;Stanojevic D.;Stoickov V.;Ilic S.;Ilic M. D.;Petrovic D.;Stojsic S.;Kecojevic S.;Dodic S.;Adic N. C.;Cankovic M.;Stojiljkovic J.;Mihajlovic B.;Radin A.;Radovanovic S.;Krotin M.;Klabnik A.;Goncalvesova E.;Pernicky M.;Murin J.;Kovar F.;Kmec J.;Semjanova H.;Strasek M.;Iskra M. S.;Ravnikar T.;Suligoj N. C.;Komel J.;Fras Z.;Jug B.;Glavic T.;Losic R.;Bombek M.;Krajnc I.;Krunic B.;Horvat S.;Kovac D.;Rajtman D.;Cencic V.;Letonja M.;Winkler R.;Valentincic M.;Melihen-Bartolic C.;Bartolic A.;Vrckovnik M. P.;Kladnik M.;Pusnik C. S.;Marolt A.;Klen J.;Drnovsek B.;Leskovar B.;Anguita M. J. F.;Page J. C. G.;Martinez F. M. S.;Andres J.;Genis A. B.;Mirabet S.;Mendez A.;Garcia-Cosio L.;Roig E.;Leon V.;Gonzalez-Costello J.;Muntane G.;Garay A.;Alcade-Martinez V.;Fernandez S. L.;Rivera-Lopez R.;Puga-Martinez M.;Fernandez-Alvarez M.;Serrano-Martinez J. L.;Crespo-Leiro M.;Grille-Cancela Z.;Marzoa-Rivas R.;Blanco-Canosa P.;Paniagua-Martin M. J.;Barge-Caballero E.;Cerdena I. L.;Baldomero I. F. H.;Padron A. L.;Rosillo S. O.;Gonzalez-Gallarza R. D.;Montanes O. S.;Manjavacas A. M. I.;Conde A. C.;Araujo A.;Soria T.;Garcia-Pavia P.;Gomez-Bueno M.;Cobo-Marcos M.;Alonso-Pulpon L.;Cubero J. S.;Sayago I.;Gonzalez-Segovia A.;Briceno A.;Subias P. E.;Hernandez M. V.;Cano M. J. R.;Sanchez M. A. G.;Jimenez J. F. D.;Garrido-Lestache E. B.;Pinilla J. M. G.;de la Villa B. G.;Sahuquillo A.;Marques R. B.;Calvo F. T.;Perez-Martinez M. T.;Gracia-Rodenas M. R.;Garrido-Bravo I. P.;Pastor-Perez F.;Pascual-Figal D. A.;Molina B. D.;Orus J.;Gonzalo F. E.;Bertomeu V.;Valero R.;Martinez-Abellan R.;Quiles J.;Rodrigez-Ortega J. A.;Mateo I.;ElAmrani A.;Fernandez-Vivancos C.;Valero D. B.;Almenar-Bonet L.;Sanchez-Lazaro I. J.;Marques-Sule E.;Facila-Rubio L.;Perez-Silvestre J.;Garcia-Gonzalez P.;Ridocci-Soriano F.;Garcia-Escriva D.;Pellicer-Cabo A.;de la Fuente Galan L.;Diaz J. L.;Platero A. R.;Arias J. C.;Blasco-Peiro T.;Julve M. S.;Sanchez-Insa E.;Aured-Guallar C.;Portoles-Ocampo A.;Melin M.;Hagglund E.;Stenberg A.;Lindahl I. -M.;Asserlund B.;Olsson L.;Dahlstrom U.;Afzelius M.;Karlstrom P.;Tengvall L.;Wiklund P. -A.;Olsson B.;Kalayci S.;Temizhan A.;Cavusoglu Y.;Gencer E.;Yilmaz M. B.;Gunes H.
2019-01-01
Abstract
Aims: Classification of acute heart failure (AHF) patients into four clinical profiles defined by evidence of congestion and perfusion is advocated by the 2016 European Society of Cardiology (ESC)guidelines. Based on the ESC-EORP-HFA Heart Failure Long-Term Registry, we compared differences in baseline characteristics, in-hospital management and outcomes among congestion/perfusion profiles using this classification. Methods and results: We included 7865 AHF patients classified at admission as: ‘dry-warm’ (9.9%), ‘wet-warm’ (69.9%), ‘wet-cold’ (19.8%) and ‘dry-cold’ (0.4%). These groups differed significantly in terms of baseline characteristics, in-hospital management and outcomes. In-hospital mortality was 2.0% in ‘dry-warm’, 3.8% in ‘wet-warm’, 9.1% in ‘dry-cold’ and 12.1% in ‘wet-cold’ patients. Based on clinical classification at admission, the adjusted hazard ratios (95% confidence interval) for 1-year mortality were: ‘wet-warm’ vs. ‘dry-warm’ 1.78 (1.43–2.21) and ‘wet-cold’ vs. ‘wet-warm’ 1.33 (1.19–1.48). For profiles resulting from discharge classification, the adjusted hazard ratios (95% confidence interval) for 1-year mortality were: ‘wet-warm’ vs. ‘dry-warm’ 1.46 (1.31–1.63) and ‘wet-cold’ vs. ‘wet-warm’ 2.20 (1.89–2.56). Among patients discharged alive, 30.9% had residual congestion, and these patients had higher 1-year mortality compared to patients discharged without congestion (28.0 vs. 18.5%). Tricuspid regurgitation, diabetes, anaemia and high New York Heart Association class were independently associated with higher risk of congestion at discharge, while beta-blockers at admission, de novo heart failure, or any cardiovascular procedure during hospitalization were associated with lower risk of residual congestion. Conclusion: Classification based on congestion/perfusion status provides clinically relevant information at hospital admission and discharge. A better understanding of the clinical course of the two entities could play an important role towards the implementation of targeted strategies that may improve outcomes.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/136392
Citazioni
22
219
205
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.