Spatial data mining, i.e., mining knowledge from large amounts of spatial data, is a demanding field since huge amounts of spatial data have been collected in various applications, ranging from remote sensing to geographical information systems (GIS), computer cartography, environmental assessment and planning. The collected data far exceeds people's ability to analyze it. Thus, new and efficient methods are needed to discover knowledge from large spatial databases. Most of the spatial data mining methods do not take into account the uncertainty of spatial information. In our work we use objects with broad boundaries, the concept that absorbs all the uncertainty by which spatial data is commonly affected and allows computations in the presence of uncertainty without rough simplifications of the reality. The topological relations between objects with a broad boundary can be organized into a three-level concept hierarchy. We developed and implemented a method for an efficient determination of such topological relations. Based on the hierarchy of topological relations we present a method for mining spatial association rules for objects with uncertainty. The progressive refinement approach is used for the optimization of the mining process.

Mining multiple-level spatial association rules for objects with a broad boundary

CLEMENTINI, ELISEO;DI FELICE P.;
2000

Abstract

Spatial data mining, i.e., mining knowledge from large amounts of spatial data, is a demanding field since huge amounts of spatial data have been collected in various applications, ranging from remote sensing to geographical information systems (GIS), computer cartography, environmental assessment and planning. The collected data far exceeds people's ability to analyze it. Thus, new and efficient methods are needed to discover knowledge from large spatial databases. Most of the spatial data mining methods do not take into account the uncertainty of spatial information. In our work we use objects with broad boundaries, the concept that absorbs all the uncertainty by which spatial data is commonly affected and allows computations in the presence of uncertainty without rough simplifications of the reality. The topological relations between objects with a broad boundary can be organized into a three-level concept hierarchy. We developed and implemented a method for an efficient determination of such topological relations. Based on the hierarchy of topological relations we present a method for mining spatial association rules for objects with uncertainty. The progressive refinement approach is used for the optimization of the mining process.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/13733
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 43
social impact