The role of platelets in haemostasis has long been known, but understanding of these cells' involvement in wound healing/tissue repair is more recent and has given rise to a multitude of translational studies. Tissue repair processes consist of complex, regulated interactions between cells modulated by biologically active molecules, most of which are growth factors released by activated platelets: this aspect represents the rationale on which the use of platelet derivatives for clinical purposes is based.In the last years, many in vitro studies have focused on the mechanisms of action by which these growth factors affect the biological activities of cells, thus supporting tissue healing. Although limited by some drawbacks (two-dimensional in vitro monocultures cannot replicate the tissue architecture and organisation of organs or the continuous interplay between different cell types), in vitro studies do have the advantages of giving rapid results and allowing precise control of platelet concentrations and other parameters.This review offers an updated overview of the data obtained from the most recent bench-top studies focused on the effects of platelet derivatives on a wide variety of human cells, highlighting their possible impact for in vivo applications. The heterogeneity of the data obtained so far is very evident. This can be explained by the different experimental settings used in each study, which may be the cause of the variability in clinical outcomes. In fact, in vitro studies suggest that the composition of platelet derivatives and the method used for their production and activation (or not) and the platelet concentration used can have profound effects on the final results.

In vitro evidence supporting applications of platelet derivatives in regenerative medicine

Giusti, Ilaria;D'Ascenzo, Sandra;Macchiarelli, Guido;Dolo, Vincenza
2019-01-01

Abstract

The role of platelets in haemostasis has long been known, but understanding of these cells' involvement in wound healing/tissue repair is more recent and has given rise to a multitude of translational studies. Tissue repair processes consist of complex, regulated interactions between cells modulated by biologically active molecules, most of which are growth factors released by activated platelets: this aspect represents the rationale on which the use of platelet derivatives for clinical purposes is based.In the last years, many in vitro studies have focused on the mechanisms of action by which these growth factors affect the biological activities of cells, thus supporting tissue healing. Although limited by some drawbacks (two-dimensional in vitro monocultures cannot replicate the tissue architecture and organisation of organs or the continuous interplay between different cell types), in vitro studies do have the advantages of giving rapid results and allowing precise control of platelet concentrations and other parameters.This review offers an updated overview of the data obtained from the most recent bench-top studies focused on the effects of platelet derivatives on a wide variety of human cells, highlighting their possible impact for in vivo applications. The heterogeneity of the data obtained so far is very evident. This can be explained by the different experimental settings used in each study, which may be the cause of the variability in clinical outcomes. In fact, in vitro studies suggest that the composition of platelet derivatives and the method used for their production and activation (or not) and the platelet concentration used can have profound effects on the final results.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/138573
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact