The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the beta-emitter Kr-85 which is present in the xenon. For XENON1T a concentration of natural krypton in xenon Kr-nat/Xe < 200 ppq (parts per quadrillion, 1 ppq = 10(-15) mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4 . 10(5) with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of natKr/Xe < 26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN.

Removing krypton from xenon by cryogenic distillation to the ppq level

Ferella A. D.
Membro del Collaboration Group
;
2017-01-01

Abstract

The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the beta-emitter Kr-85 which is present in the xenon. For XENON1T a concentration of natural krypton in xenon Kr-nat/Xe < 200 ppq (parts per quadrillion, 1 ppq = 10(-15) mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4 . 10(5) with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of natKr/Xe < 26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/139509
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 47
social impact