We theoretically demonstrate the realization of a complete canonical set of all-optical logic gates (AND, OR, NOT), with a persistent (stored) output, by combining propagative spatial solitons in a photorefractive crystal and dissipative cavity solitons in a downstream broad-area vertical cavity surface emitting laser (VCSEL). The system uses same-color, optical-axis aligned input and output channels with fixed readout locations, while switching from one gate to another is achieved by simply varying the potential applied to the photorefractive crystal. The inputs are Gaussian beams launched in the photorefractive crystal and the output is a bistable, persistent soliton in the VCSEL with a 'robust' eye diagram and large signal-to-noise ratio (SNR). Fast switching and intrinsic parallelism suggest that high bit flow rates can be obtained. (C) 2014 Optical Society of America
A concomitant and complete set of nonvolatile all-optical logic gates based on hybrid spatial solitons
Rizza C.;
2014-01-01
Abstract
We theoretically demonstrate the realization of a complete canonical set of all-optical logic gates (AND, OR, NOT), with a persistent (stored) output, by combining propagative spatial solitons in a photorefractive crystal and dissipative cavity solitons in a downstream broad-area vertical cavity surface emitting laser (VCSEL). The system uses same-color, optical-axis aligned input and output channels with fixed readout locations, while switching from one gate to another is achieved by simply varying the potential applied to the photorefractive crystal. The inputs are Gaussian beams launched in the photorefractive crystal and the output is a bistable, persistent soliton in the VCSEL with a 'robust' eye diagram and large signal-to-noise ratio (SNR). Fast switching and intrinsic parallelism suggest that high bit flow rates can be obtained. (C) 2014 Optical Society of AmericaPubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.