The common ragweed Ambrosia artemisiifolia has spread throughout Europe since the 1800s, infesting croplands and causing severe allergic reactions. Recently, the ragweed leaf beetle Ophraella communa was found in Italy and Switzerland; considering that it feeds primarily on A. artemisiifolia in its invaded ranges, some projects started biological control of this invasive plant through the adventive beetle. In this context of a 'double' invasion, we assessed the influence of climate change on the spread of these alien species through ecological niche modelling. Considering that A. artemisiifolia mainly lives in agricultural and urbanized areas, we refined the models using satellite remote-sensing data; we also assessed the co-occurrence of the two species in these patches. A. artemisiifolia is predicted to expand more than O. communa in the future, with the medium and high classes of suitability of the former increasing more than the latter, resulting in lower efficacy for O. communa to potentially control A. artemisiifolia in agricultural and urbanized patches. Although a future assessment was performed through the 2018 land-cover data, the predictions we propose are intended to be a starting point for future assessments, considering that the possibility of a shrinkage of target patches is unlikely to occur.

Investigating the current and future co-occurrence of Ambrosia artemisiifolia and Ophraella communa in europe through ecological modelling and remote sensing data analysis

Iannella M.;De Simone W.
;
D'alessandro P.;Console G.;Biondi M.
2019-01-01

Abstract

The common ragweed Ambrosia artemisiifolia has spread throughout Europe since the 1800s, infesting croplands and causing severe allergic reactions. Recently, the ragweed leaf beetle Ophraella communa was found in Italy and Switzerland; considering that it feeds primarily on A. artemisiifolia in its invaded ranges, some projects started biological control of this invasive plant through the adventive beetle. In this context of a 'double' invasion, we assessed the influence of climate change on the spread of these alien species through ecological niche modelling. Considering that A. artemisiifolia mainly lives in agricultural and urbanized areas, we refined the models using satellite remote-sensing data; we also assessed the co-occurrence of the two species in these patches. A. artemisiifolia is predicted to expand more than O. communa in the future, with the medium and high classes of suitability of the former increasing more than the latter, resulting in lower efficacy for O. communa to potentially control A. artemisiifolia in agricultural and urbanized patches. Although a future assessment was performed through the 2018 land-cover data, the predictions we propose are intended to be a starting point for future assessments, considering that the possibility of a shrinkage of target patches is unlikely to occur.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/139550
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact