We study a Cucker-Smale-type flocking model with distributed time delay where individuals interact with each other through normalized communication weights. Based on a Lyapunov functional approach, we provide sufficient conditions for the velocity alignment behavior. We then show that as the number of individuals N tends to infinity, the N-particle system can be well approximated by a delayed Vlasov alignment equation. Furthermore, we also establish the global existence of measure-valued solutions for the delayed Vlasov alignment equation and its large-time asymptotic behavior.

Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays

Pignotti, Cristina
2019-01-01

Abstract

We study a Cucker-Smale-type flocking model with distributed time delay where individuals interact with each other through normalized communication weights. Based on a Lyapunov functional approach, we provide sufficient conditions for the velocity alignment behavior. We then show that as the number of individuals N tends to infinity, the N-particle system can be well approximated by a delayed Vlasov alignment equation. Furthermore, we also establish the global existence of measure-valued solutions for the delayed Vlasov alignment equation and its large-time asymptotic behavior.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/139640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 24
social impact