Extracellular vesicles (EVs) are emerging as mediators of a range of pathological processes, including cancer. However, their role in bone metastases has been poorly explored. We investigated EV-mediated effects of osteotropic breast cancer cells (MDA-MB-231) on bone resident cells and endothelial cells. Pretreatment of osteoblasts with conditioned medium (CM) of MDA-MB-231 (MDA) cells promoted pro-osteoclastogenic and -angiogenic effects by osteoblast EVs (OB-EVs), as well as an increase of RANKL-positive OB-EVs. Moreover, when treating osteoblasts with MDA-EVs, we observed a reduction of their number, metabolic activity and Alp activity. MDA-EVs also reduced transcription of Cyclin D1 and of the osteoblast-differentiating genes, while enhancing the expression of the pro-osteoclastogenic factors Rankl, Lcn2, Il1b and Il6. Interestingly, a cytokine array on CM from osteoblasts treated with MDA-EVs showed an increase of the cytokines CCL3, CXCL2, Reg3G and VEGF, while OPG and WISP1 were downregulated. MDA-EVs contained mRNAs of genes involved in bone metabolism, as well as cytokines, including PDGF-BB, CCL3, CCL27, VEGF and Angiopoietin 2. In line with this profile, MDA-EVs increased osteoclastogenesis and in vivo angiogenesis. Finally, intraperitoneal injection of MDA-EVs in mice revealed their ability to reach the bone microenvironment and be integrated by osteoblasts and osteoclasts. In conclusion, we demonstrated a role for osteoblast- and tumor cell-derived-EVs in the deregulation of bone and endothelial cell physiology, thus fueling the vicious cycle induced by bone tumors via EVs. This article is protected by copyright. All rights reserved.
Extracellular Vesicles From Osteotropic Breast Cancer Cells Affect Bone Resident Cells
Cappariello A.;Ucci A.;Delle Monache S.;Teti A.;Rucci N.
2019-01-01
Abstract
Extracellular vesicles (EVs) are emerging as mediators of a range of pathological processes, including cancer. However, their role in bone metastases has been poorly explored. We investigated EV-mediated effects of osteotropic breast cancer cells (MDA-MB-231) on bone resident cells and endothelial cells. Pretreatment of osteoblasts with conditioned medium (CM) of MDA-MB-231 (MDA) cells promoted pro-osteoclastogenic and -angiogenic effects by osteoblast EVs (OB-EVs), as well as an increase of RANKL-positive OB-EVs. Moreover, when treating osteoblasts with MDA-EVs, we observed a reduction of their number, metabolic activity and Alp activity. MDA-EVs also reduced transcription of Cyclin D1 and of the osteoblast-differentiating genes, while enhancing the expression of the pro-osteoclastogenic factors Rankl, Lcn2, Il1b and Il6. Interestingly, a cytokine array on CM from osteoblasts treated with MDA-EVs showed an increase of the cytokines CCL3, CXCL2, Reg3G and VEGF, while OPG and WISP1 were downregulated. MDA-EVs contained mRNAs of genes involved in bone metabolism, as well as cytokines, including PDGF-BB, CCL3, CCL27, VEGF and Angiopoietin 2. In line with this profile, MDA-EVs increased osteoclastogenesis and in vivo angiogenesis. Finally, intraperitoneal injection of MDA-EVs in mice revealed their ability to reach the bone microenvironment and be integrated by osteoblasts and osteoclasts. In conclusion, we demonstrated a role for osteoblast- and tumor cell-derived-EVs in the deregulation of bone and endothelial cell physiology, thus fueling the vicious cycle induced by bone tumors via EVs. This article is protected by copyright. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
EVs and bone.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
4.72 MB
Formato
Adobe PDF
|
4.72 MB | Adobe PDF | Visualizza/Apri |
jbmr.3891.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
3.09 MB
Formato
Adobe PDF
|
3.09 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.