This study deals with the application of two-dimensional proton nuclear magnetic resonance relaxometry (2D 1H NMR-R) to the characterization of porous ceramics nearly free of magnetic compounds. Different microstructural properties were obtained by firing a diamagnetic mixture of kaolin, calcium, and magnesium carbonate over a wide range of maximum temperatures (600–1100 °C) and firing times at the maximum temperature (soaking times) (0–10 h). The 2D 1H NMR-R method relies on the correlated measurement of 1H longitudinal (T 1) and transverse (T 2) relaxation times of pore-filling water by which the properties of the interconnected pore space may be investigated. In the absence of significant magnetic susceptibility effect due to para- and ferro-magnetic compounds, the 2D 1H NMR-R maps allow studying the conjoint effects on pore size distribution and inter-pore coupling due to the variations in both time and temperature of firing. The NMR experiments were performed with a low-field 1H NMR sensor, which allows non-destructive and in situ analysis. For ceramic specimens fired at 600 and 700 °C, the fraction of smallest pores increases with firing time at the expenses of those with intermediate size. The pore shrinkage occurring at this stage, and likely associated with the transformation of kaolinite in metakaolinite, is affected in a similar way by soaking time and firing temperature, in line with the concept of equivalent firing temperature. At temperatures from 800 to 1100 °C, the structural modifications involving interconnectivity and average pore size are driven primarily by firing temperature and, secondarily, by soaking time. The 2D 1H NMR-R results are confirmed by more traditional, but destructive, mineralogical, and structural analyses like X-ray powder diffraction, helium pycnometry, mercury intrusion porosimetry, and nitrogen adsorption/desorption method.

Firing-Induced Microstructural Properties of Quasi-Diamagnetic Carbonate-Based Porous Ceramics: a 1H NMR Relaxation Correlation Study

Casieri C;Quaresima R.;
2015-01-01

Abstract

This study deals with the application of two-dimensional proton nuclear magnetic resonance relaxometry (2D 1H NMR-R) to the characterization of porous ceramics nearly free of magnetic compounds. Different microstructural properties were obtained by firing a diamagnetic mixture of kaolin, calcium, and magnesium carbonate over a wide range of maximum temperatures (600–1100 °C) and firing times at the maximum temperature (soaking times) (0–10 h). The 2D 1H NMR-R method relies on the correlated measurement of 1H longitudinal (T 1) and transverse (T 2) relaxation times of pore-filling water by which the properties of the interconnected pore space may be investigated. In the absence of significant magnetic susceptibility effect due to para- and ferro-magnetic compounds, the 2D 1H NMR-R maps allow studying the conjoint effects on pore size distribution and inter-pore coupling due to the variations in both time and temperature of firing. The NMR experiments were performed with a low-field 1H NMR sensor, which allows non-destructive and in situ analysis. For ceramic specimens fired at 600 and 700 °C, the fraction of smallest pores increases with firing time at the expenses of those with intermediate size. The pore shrinkage occurring at this stage, and likely associated with the transformation of kaolinite in metakaolinite, is affected in a similar way by soaking time and firing temperature, in line with the concept of equivalent firing temperature. At temperatures from 800 to 1100 °C, the structural modifications involving interconnectivity and average pore size are driven primarily by firing temperature and, secondarily, by soaking time. The 2D 1H NMR-R results are confirmed by more traditional, but destructive, mineralogical, and structural analyses like X-ray powder diffraction, helium pycnometry, mercury intrusion porosimetry, and nitrogen adsorption/desorption method.
File in questo prodotto:
File Dimensione Formato  
AMR-2015.pdf

non disponibili

Licenza: Non specificato
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/13980
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact