Live intracellular imaging is a valuable tool in modern diagnostics and pharmacology. Surface Enhanced Raman Spectroscopy (SERS) stands out as a non-destructive and multiplexed technique, but intracellular SERS imaging still suffers from interfering background from endogenous components. Here we show the assembly of small colloidal SERS probes with Raman signal in the cell-silent window of 1800–2900 cm−1 for biorthogonal intracellular SERS imaging of dopamine that was undistinguishable from the endogenous cell background. By linking colloidal silver nanoparticles with alkyne-dopamine adducts, clusters are formed by 2–6 nanoparticles spaced by tight interparticle gaps that exhibited high electric field enhancement and strong SERS signals of alkyne and dopamines. Due to the cell-silent signals of the alkyne, intracellular in-vitro Raman imaging shows that the dopamines on the internalized clusters remain distinguishable across the cytoplasm with good spatial resolution. Our method can be a general-purpose method for real-time imaging of biomolecules, such as proteins, peptides, DNA and drugs.

Live Intracellular Biorthogonal Imaging by Surface Enhanced Raman Spectroscopy using Alkyne-Silver Nanoparticles Clusters

Ardini M.;
2018-01-01

Abstract

Live intracellular imaging is a valuable tool in modern diagnostics and pharmacology. Surface Enhanced Raman Spectroscopy (SERS) stands out as a non-destructive and multiplexed technique, but intracellular SERS imaging still suffers from interfering background from endogenous components. Here we show the assembly of small colloidal SERS probes with Raman signal in the cell-silent window of 1800–2900 cm−1 for biorthogonal intracellular SERS imaging of dopamine that was undistinguishable from the endogenous cell background. By linking colloidal silver nanoparticles with alkyne-dopamine adducts, clusters are formed by 2–6 nanoparticles spaced by tight interparticle gaps that exhibited high electric field enhancement and strong SERS signals of alkyne and dopamines. Due to the cell-silent signals of the alkyne, intracellular in-vitro Raman imaging shows that the dopamines on the internalized clusters remain distinguishable across the cytoplasm with good spatial resolution. Our method can be a general-purpose method for real-time imaging of biomolecules, such as proteins, peptides, DNA and drugs.
File in questo prodotto:
File Dimensione Formato  
s41598-018-31165-3.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Dominio pubblico
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/140350
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 22
social impact