This paper presents a study aimed to assess the modulus of elasticity E0 and the rolling shear modulus G90 of three-layer Maritime Pine Cross Laminated Timber (CLT) panels. The proposed methodology is based on a vibration test carried out on panels in cantilever configuration and on the results of a sensitivity study conducted via Finite Element model analyses, which highlights a straightforward relationship between the first two vertical natural frequencies and the aforementioned elastic properties of the panels. The procedure has been developed and applied to a specific configuration of CLT panels made of sardinian maritime pine (Pinus Pinaster). Nevertheless, the same approach could be easily extended to any cantilever three-layers CLT panel with different dimensions, providing that a new sensitivity study is carried out. The results suggest that the proposed methodology can be effectively used as a dynamic identification process for quality control in industrial production chains, where the role of non-destructive controls is becoming increasingly important. © 2019 Elsevier Ltd

Use of the cantilever beam vibration method for determining the elastic properties of maritime pine cross-laminated panels

Fragiacomo, M.
2019-01-01

Abstract

This paper presents a study aimed to assess the modulus of elasticity E0 and the rolling shear modulus G90 of three-layer Maritime Pine Cross Laminated Timber (CLT) panels. The proposed methodology is based on a vibration test carried out on panels in cantilever configuration and on the results of a sensitivity study conducted via Finite Element model analyses, which highlights a straightforward relationship between the first two vertical natural frequencies and the aforementioned elastic properties of the panels. The procedure has been developed and applied to a specific configuration of CLT panels made of sardinian maritime pine (Pinus Pinaster). Nevertheless, the same approach could be easily extended to any cantilever three-layers CLT panel with different dimensions, providing that a new sensitivity study is carried out. The results suggest that the proposed methodology can be effectively used as a dynamic identification process for quality control in industrial production chains, where the role of non-destructive controls is becoming increasingly important. © 2019 Elsevier Ltd
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/141658
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact