Variational principles represent a general framework for determining the mechanical state of a system, by identifying its motion as a minimum of a pertinent functional. Moreover, finite element methods are naturally based on variational principles and provide a very powerful tool for numerically solving many mechanical as well as other multi-physics problems. The purpose of the present note is to illustrate some recent applications with special reference to biomechanics and dissipation in quasi-brittle materials and piezo-electromechanical structures, in order to confirm the validation and to highlight the bright prospects of this method.

Variational principles in numerical practice

Giorgio Ivan
2018-01-01

Abstract

Variational principles represent a general framework for determining the mechanical state of a system, by identifying its motion as a minimum of a pertinent functional. Moreover, finite element methods are naturally based on variational principles and provide a very powerful tool for numerically solving many mechanical as well as other multi-physics problems. The purpose of the present note is to illustrate some recent applications with special reference to biomechanics and dissipation in quasi-brittle materials and piezo-electromechanical structures, in order to confirm the validation and to highlight the bright prospects of this method.
2018
978-3-662-53605-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/141915
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact