In the paper, a vibration clamping system powered by harvested energy with implementation of the so-called SSDV (synchronized switch clamping on voltage source) technique is designed and investigated. In the semi-passive approach, the piezoelectric element is intermittently switched from open-circuit to specific impedance synchronously with the structural vibration. Due to this switching procedure, a phase difference appears between the strain induced by vibration and the resulting voltage, thus creating energy dissipation. By supplying the energy collected from the piezoelectric materials to the switching circuit, a new low-power device using the SSDV technique is proposed. Compared with the original self-powered SSDI (synchronized switch damping on inductor), such a device can significantly improve its performance of vibration control. Its effectiveness in the single-mode resonant damping of a composite beam is validated by the experimental results. (C) 2010 Elsevier B.V. All rights reserved.
A low-power circuit for piezoelectric vibration control by synchronized switching on voltage sources
Ivan Giorgio;Francesco Dell'Isola
2010-01-01
Abstract
In the paper, a vibration clamping system powered by harvested energy with implementation of the so-called SSDV (synchronized switch clamping on voltage source) technique is designed and investigated. In the semi-passive approach, the piezoelectric element is intermittently switched from open-circuit to specific impedance synchronously with the structural vibration. Due to this switching procedure, a phase difference appears between the strain induced by vibration and the resulting voltage, thus creating energy dissipation. By supplying the energy collected from the piezoelectric materials to the switching circuit, a new low-power device using the SSDV technique is proposed. Compared with the original self-powered SSDI (synchronized switch damping on inductor), such a device can significantly improve its performance of vibration control. Its effectiveness in the single-mode resonant damping of a composite beam is validated by the experimental results. (C) 2010 Elsevier B.V. All rights reserved.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.