A nonlinear model for the dynamics of a Kirchhoff rod in the three-dimensional space is developed in the framework of a discrete elastic theory. The formulation avoids the use of Euler angles for the orientation of the rod cross-sections to provide a computationally singularity-free parameterization of rotations along the motion trajectories. The material directions related to the principal axes of the cross-sections are specified using auxiliary points that must satisfy constraints enforced by the Lagrange multipliers method. A generalization of this approach is presented to take into account Poisson’s effect in an orthotropic rod. Numerical simulations are performed to test the presented formulation.

A discrete formulation of Kirchhoff rods in large-motion dynamics

Giorgio I
2020

Abstract

A nonlinear model for the dynamics of a Kirchhoff rod in the three-dimensional space is developed in the framework of a discrete elastic theory. The formulation avoids the use of Euler angles for the orientation of the rod cross-sections to provide a computationally singularity-free parameterization of rotations along the motion trajectories. The material directions related to the principal axes of the cross-sections are specified using auxiliary points that must satisfy constraints enforced by the Lagrange multipliers method. A generalization of this approach is presented to take into account Poisson’s effect in an orthotropic rod. Numerical simulations are performed to test the presented formulation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/141948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 32
social impact