In this paper, we deal with the problem of tracking a desired plasma glucose concentration by means of intravenous insulin administration, for Type 2 diabetic patients. A nonlinear time-delay model is used to describe the glucose-insulin regulatory system, according to which a model-based approach is exploited to design a semiglobal sampled-data dynamic output feedback controller. It is shown that emulation, by Euler approximation, of a proposed continuous-time control law yields stabilization in the sample-and-hold sense of the glucose-insulin system. The glucose regulator makes use of only sampled glucose measurements. Theoretical results are preclinically validated through a virtual environment broadly accepted as a substitute to animal trials for the preclinical testing of control strategies in plasma glucose regulation. Numerical results are encouraging and pave the way to further clinical verifications.
Semiglobal Sampled-Data Dynamic Output Feedback Controller for the Glucose-Insulin System
Di Ferdinando M.
;Pepe P.;Palumbo P.;
2020-01-01
Abstract
In this paper, we deal with the problem of tracking a desired plasma glucose concentration by means of intravenous insulin administration, for Type 2 diabetic patients. A nonlinear time-delay model is used to describe the glucose-insulin regulatory system, according to which a model-based approach is exploited to design a semiglobal sampled-data dynamic output feedback controller. It is shown that emulation, by Euler approximation, of a proposed continuous-time control law yields stabilization in the sample-and-hold sense of the glucose-insulin system. The glucose regulator makes use of only sampled glucose measurements. Theoretical results are preclinically validated through a virtual environment broadly accepted as a substitute to animal trials for the preclinical testing of control strategies in plasma glucose regulation. Numerical results are encouraging and pave the way to further clinical verifications.File | Dimensione | Formato | |
---|---|---|---|
TCST_2020.pdf
solo utenti autorizzati
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
4.28 MB
Formato
Adobe PDF
|
4.28 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.