We propose and analyze a simple variational model for dislocations at semi-coherent interfaces. The energy functional describes the competition between two terms: a surface energy induced by dislocations and a bulk elastic energy, spent to decrease the amount of dislocations needed to compensate the lattice misfit. We prove that, for minimizers, the former scales like the surface area of the interface, the latter like its diameter. The proposed continuum model is built on some explicit computations done in the framework of the semi-discrete theory of dislocations. Even if we deal with finite elasticity, linearized elasticity naturally emerges in our analysis since the far-field strain vanishes as the interface size increases.

A Variational Model for Dislocations at Semi-coherent Interfaces

Palombaro M.;
2017-01-01

Abstract

We propose and analyze a simple variational model for dislocations at semi-coherent interfaces. The energy functional describes the competition between two terms: a surface energy induced by dislocations and a bulk elastic energy, spent to decrease the amount of dislocations needed to compensate the lattice misfit. We prove that, for minimizers, the former scales like the surface area of the interface, the latter like its diameter. The proposed continuum model is built on some explicit computations done in the framework of the semi-discrete theory of dislocations. Even if we deal with finite elasticity, linearized elasticity naturally emerges in our analysis since the far-field strain vanishes as the interface size increases.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/142133
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact