The goal of this paper is to accurately describe the metastable dynamics of the solutions to the hyperbolic relaxation of the Cahn–Hilliard equation in a bounded interval of the real line, subject to homogeneous Neumann boundary conditions. We prove the existence of an approximately invariant manifoldM for such boundary value problem, that is we construct a narrow channel containing M and satisfying the following property: a solution starting from the channel evolves very slowly and leaves the channel only after an exponentially long time. Moreover, in the channel the solution has a transition layer structure and we derive a system of ODEs, which accurately describes the slow dynamics of the layers. A comparison with the layer dynamics of the classic Cahn–Hilliard equation is also performed.

Metastability and Layer Dynamics for the Hyperbolic Relaxation of the Cahn–Hilliard Equation

Folino R.;Lattanzio C.;
2021

Abstract

The goal of this paper is to accurately describe the metastable dynamics of the solutions to the hyperbolic relaxation of the Cahn–Hilliard equation in a bounded interval of the real line, subject to homogeneous Neumann boundary conditions. We prove the existence of an approximately invariant manifoldM for such boundary value problem, that is we construct a narrow channel containing M and satisfying the following property: a solution starting from the channel evolves very slowly and leaves the channel only after an exponentially long time. Moreover, in the channel the solution has a transition layer structure and we derive a system of ODEs, which accurately describes the slow dynamics of the layers. A comparison with the layer dynamics of the classic Cahn–Hilliard equation is also performed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/142154
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact