We consider the evolution by mean curvature flow of a closed submanifold of the complex projective space. We show that, if the submanifold has small codimension and satisfies a suitable pinching condition on the second fundamental form, then the evolution has two possible behaviors: either the submanifold shrinks to a round point in finite time, or it converges smoothly to a totally geodesic limit in infinite time. The latter behavior is only possible if the dimension is even. These results generalize previous works by Huisken and Baker on the mean curvature flow of submanifolds of the sphere.

Mean curvature flow of pinched submanifolds of CPn

Pipoli, G;Sinestrari, C
2017-01-01

Abstract

We consider the evolution by mean curvature flow of a closed submanifold of the complex projective space. We show that, if the submanifold has small codimension and satisfies a suitable pinching condition on the second fundamental form, then the evolution has two possible behaviors: either the submanifold shrinks to a round point in finite time, or it converges smoothly to a totally geodesic limit in infinite time. The latter behavior is only possible if the dimension is even. These results generalize previous works by Huisken and Baker on the mean curvature flow of submanifolds of the sphere.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/142293
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact