We consider a binary system of small and large objects in the continuous space interacting via a nonnegative potential. By integrating over the small objects, the effective interaction between the large ones becomes multi-body. We prove convergence of the cluster expansion for the grand canonical ensemble of the effective system of large objects. To perform the combinatorial estimate of hypergraphs (due to the multi-body origin of the interaction), we exploit the underlying structure of the original binary system. Moreover, we obtain a sufficient condition for convergence which involves the surface of the large objects rather than their volume. This amounts to a significant improvement in comparison to a direct application of the known cluster expansion theorems. Our result is valid for the particular case of hard spheres (colloids) for which we rigorously treat the depletion interaction.
Cluster Expansions with Renormalized Activities and Applications to Colloids
Tsagkarogiannis D.
2020-01-01
Abstract
We consider a binary system of small and large objects in the continuous space interacting via a nonnegative potential. By integrating over the small objects, the effective interaction between the large ones becomes multi-body. We prove convergence of the cluster expansion for the grand canonical ensemble of the effective system of large objects. To perform the combinatorial estimate of hypergraphs (due to the multi-body origin of the interaction), we exploit the underlying structure of the original binary system. Moreover, we obtain a sufficient condition for convergence which involves the surface of the large objects rather than their volume. This amounts to a significant improvement in comparison to a direct application of the known cluster expansion theorems. Our result is valid for the particular case of hard spheres (colloids) for which we rigorously treat the depletion interaction.File | Dimensione | Formato | |
---|---|---|---|
JT_submitted_corrections2.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
493.49 kB
Formato
Adobe PDF
|
493.49 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.