New existence results for quasiequilibrium problems on unbounded feasible sets in a finite-dimensional space and without any assumption of monotonicity are established. The key point behind these results is a weak coercivity condition for a generalized game which extends a recent one proposed in Konnov and Dyabilkin (J Glob Optim 49:575–587, 2011) for equilibrium problems and an older one given in Cubiotti (Comput Math Appl 30:11–22, 1995) for quasiequilibrium problems. Some examples are also given.
A coercivity condition for nonmonotone quasiequilibria on finite-dimensional spaces
Castellani M.;Giuli M.
2019-01-01
Abstract
New existence results for quasiequilibrium problems on unbounded feasible sets in a finite-dimensional space and without any assumption of monotonicity are established. The key point behind these results is a weak coercivity condition for a generalized game which extends a recent one proposed in Konnov and Dyabilkin (J Glob Optim 49:575–587, 2011) for equilibrium problems and an older one given in Cubiotti (Comput Math Appl 30:11–22, 1995) for quasiequilibrium problems. Some examples are also given.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.