This paper provides sufficient conditions for the existence of solutions for quasiequilibrium problems and generalized game problems in the setting of infinite-dimensional metrizable spaces. To this purpose, we prove a modified version of a selection theorem due to Michael [15] by exploiting the fact that any compact set in a metric space is both complete and separable. Thereafter, by a fixed point technique which is based on the notion of inside point of a convex set, we provide some existence results without requiring the upper semicontinuity and the closed-valuedness of the feasibility maps.

Existence of quasiequilibria in metric vector spaces

Castellani M.;Giuli M.
2020-01-01

Abstract

This paper provides sufficient conditions for the existence of solutions for quasiequilibrium problems and generalized game problems in the setting of infinite-dimensional metrizable spaces. To this purpose, we prove a modified version of a selection theorem due to Michael [15] by exploiting the fact that any compact set in a metric space is both complete and separable. Thereafter, by a fixed point technique which is based on the notion of inside point of a convex set, we provide some existence results without requiring the upper semicontinuity and the closed-valuedness of the feasibility maps.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022247X19310194-main.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 358.21 kB
Formato Adobe PDF
358.21 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/142418
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact