In this paper, we study a hyperbolic-elliptic system on a network which arises in biological models involving chemotaxis. We also consider suitable transmission conditions at internal points of the graph which on one hand allow discontinuous density functions at nodes, and on the other guarantee the continuity of the fluxes at each node. Finally, we prove local and global existence of non-negative solutions - the latter in the case of small (in the L1-norm) initial data - as well as their uniqueness.

Local and global solutions for a hyperbolic-elliptic model of chemotaxis on a network

Guarguaglini F. R.;
2019

Abstract

In this paper, we study a hyperbolic-elliptic system on a network which arises in biological models involving chemotaxis. We also consider suitable transmission conditions at internal points of the graph which on one hand allow discontinuous density functions at nodes, and on the other guarantee the continuity of the fluxes at each node. Finally, we prove local and global existence of non-negative solutions - the latter in the case of small (in the L1-norm) initial data - as well as their uniqueness.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/142729
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact