We consider the convex quadratic linearly constrained problem with bounded variables and with huge and dense Hessian matrix that arises in many applications such as the training problem of bias support vector machines. We propose a decomposition algorithmic scheme suitable to parallel implementations and we prove global convergence under suitable conditions. Focusing on support vector machines training, we outline how these assumptions can be satisfied in practice and we suggest various specific implementations. Extensions of the theoretical results to general linearly constrained problem are provided. We included numerical results on support vector machines with the aim of showing the viability and the effectiveness of the proposed scheme.

Parallel decomposition methods for linearly constrained problems subject to simple bound with application to the SVMs training

Manno A.;
2018

Abstract

We consider the convex quadratic linearly constrained problem with bounded variables and with huge and dense Hessian matrix that arises in many applications such as the training problem of bias support vector machines. We propose a decomposition algorithmic scheme suitable to parallel implementations and we prove global convergence under suitable conditions. Focusing on support vector machines training, we outline how these assumptions can be satisfied in practice and we suggest various specific implementations. Extensions of the theoretical results to general linearly constrained problem are provided. We included numerical results on support vector machines with the aim of showing the viability and the effectiveness of the proposed scheme.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/142934
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact