In this overview (introductory article to a special issue including 14 papers), we consider all main types of natural and artificial inland freshwater habitas (fwh). For each type, we identify the main biodiversity patterns and ecological features, human impacts on the system and environmental issues, and discuss ways to use this information to improve stewardship. Examples of selected key biodiversity/ecological features (habitat type): narrow endemics, sensitive (groundwater and GDEs); crenobionts, LIHRes (springs); unidirectional flow, nutrient spiraling (streams); naturally turbid, floodplains, large-bodied species (large rivers); depth-variation in benthic communities (lakes); endemism and diversity (ancient lakes); threatened, sensitive species (oxbow lakes, SWE); diverse, reduced littoral (reservoirs); cold-adapted species (Boreal and Arctic fwh); endemism, depauperate (Antarctic fwh); flood pulse, intermittent wetlands, biggest river basins (tropical fwh); variable hydrologic regime-periods of drying, flash floods (arid-climate fwh). Selected impacts: eutrophication and other pollution, hydrologic modifications, overexploitation, habitat destruction, invasive species, salinization. Climate change is a threat multiplier, and it is important to quantify resistance, resilience, and recovery to assess the strategic role of the different types of freshwater ecosystems and their value for biodiversity conservation. Effective conservation solutions are dependent on an understanding of connectivity between different freshwater ecosystems (including related terrestrial, coastal and marine systems).
Characteristics, main impacts, and stewardship of natural and artificial freshwater environments: Consequences for biodiversity conservation
Galassi D. M. P.;Fiasca B.;
2020-01-01
Abstract
In this overview (introductory article to a special issue including 14 papers), we consider all main types of natural and artificial inland freshwater habitas (fwh). For each type, we identify the main biodiversity patterns and ecological features, human impacts on the system and environmental issues, and discuss ways to use this information to improve stewardship. Examples of selected key biodiversity/ecological features (habitat type): narrow endemics, sensitive (groundwater and GDEs); crenobionts, LIHRes (springs); unidirectional flow, nutrient spiraling (streams); naturally turbid, floodplains, large-bodied species (large rivers); depth-variation in benthic communities (lakes); endemism and diversity (ancient lakes); threatened, sensitive species (oxbow lakes, SWE); diverse, reduced littoral (reservoirs); cold-adapted species (Boreal and Arctic fwh); endemism, depauperate (Antarctic fwh); flood pulse, intermittent wetlands, biggest river basins (tropical fwh); variable hydrologic regime-periods of drying, flash floods (arid-climate fwh). Selected impacts: eutrophication and other pollution, hydrologic modifications, overexploitation, habitat destruction, invasive species, salinization. Climate change is a threat multiplier, and it is important to quantify resistance, resilience, and recovery to assess the strategic role of the different types of freshwater ecosystems and their value for biodiversity conservation. Effective conservation solutions are dependent on an understanding of connectivity between different freshwater ecosystems (including related terrestrial, coastal and marine systems).File | Dimensione | Formato | |
---|---|---|---|
water-12-00260-v2(1)(1).pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.41 MB
Formato
Adobe PDF
|
1.41 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.