We prove existence, uniqueness and gradient estimates of stochastic differential utility as a solution of the Cauchy problem for the following equation in R-3: partial derivative(xx)u + upartial derivative(y)u - partial derivative(t)u = f((.),u), where f is Lipschitz continuous. We also characterize the solution in the vanishing viscosity sense.

On the viscosity solutions of a stochastic differential utility problem

ANTONELLI, FABIO;
2002-01-01

Abstract

We prove existence, uniqueness and gradient estimates of stochastic differential utility as a solution of the Cauchy problem for the following equation in R-3: partial derivative(xx)u + upartial derivative(y)u - partial derivative(t)u = f((.),u), where f is Lipschitz continuous. We also characterize the solution in the vanishing viscosity sense.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/14420
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 18
social impact