The hole-clinching process is one of the mechanical methods for joining dissimilar materials, such as aluminum alloy with advanced high-strength steel, hot-pressed steel, and carbon fiber reinforced plastics, employing forming technology-based methods. In joint design, the analysis of the failure-mode dependent joint strength is a crucial step in achieving structural performance for practical applications. In this study, the influence of the geometrical interlocking parameters on the failure-mode dependent joint strength was investigated in order to design the geometrical interlocking shape of the hole-clinched joint to achieve a target joint strength. Moreover, the failure process of the hole-clinched joint under pullout loading condition was studied to determine the geometrical interlocking parameters that affect joint strength. Based on the results of the finite element analysis, an analytical approach for the failure-mode dependent joint strength was proposed to predict the strength of the hole-clinched joint. In addition, the proposed analytical approach was applied to the hole-clinching process with dissimilar materials. Its effectiveness was then verified using the cross-tension test. Accordingly, it was found that it was possible to predict the failure modes and joint strength with a maximum error of 7.8%.

Analysis of failure-mode dependent joint strength in hole clinching from the aspects of geometrical interlocking parameters

Lambiase F.;
2018

Abstract

The hole-clinching process is one of the mechanical methods for joining dissimilar materials, such as aluminum alloy with advanced high-strength steel, hot-pressed steel, and carbon fiber reinforced plastics, employing forming technology-based methods. In joint design, the analysis of the failure-mode dependent joint strength is a crucial step in achieving structural performance for practical applications. In this study, the influence of the geometrical interlocking parameters on the failure-mode dependent joint strength was investigated in order to design the geometrical interlocking shape of the hole-clinched joint to achieve a target joint strength. Moreover, the failure process of the hole-clinched joint under pullout loading condition was studied to determine the geometrical interlocking parameters that affect joint strength. Based on the results of the finite element analysis, an analytical approach for the failure-mode dependent joint strength was proposed to predict the strength of the hole-clinched joint. In addition, the proposed analytical approach was applied to the hole-clinching process with dissimilar materials. Its effectiveness was then verified using the cross-tension test. Accordingly, it was found that it was possible to predict the failure modes and joint strength with a maximum error of 7.8%.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/145075
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact