We classify the translators to the mean curvature flow in the three-dimensional solvable group Sol3 that are invariant under the action of a one-parameter group of isometries of the ambient space. In particular, we show that Sol3 admits graphical translators defined on a half plane, in contrast with a rigidity result of Shahriyari (Geom Dedicata 175:57–64, 2015) for translators in the Euclidean space. Moreover, we exhibit some nonexistence results.

Invariant translators of the solvable group

Pipoli G.
2020-01-01

Abstract

We classify the translators to the mean curvature flow in the three-dimensional solvable group Sol3 that are invariant under the action of a one-parameter group of isometries of the ambient space. In particular, we show that Sol3 admits graphical translators defined on a half plane, in contrast with a rigidity result of Shahriyari (Geom Dedicata 175:57–64, 2015) for translators in the Euclidean space. Moreover, we exhibit some nonexistence results.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/145468
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact