We consider the compressible Navier-Stokes system describing the motion of a viscous fluid confined to a straight layer. We show that the weak solutions in the 3D domain converge strongly to the solution of the 2D incompressible Navier-Stokes equations (Euler equations) when the Mach number tends to zero as well as (and the viscosity goes to zero).
Low Mach number limit on thin domains
Caggio M.;Donatelli D.;
2020-01-01
Abstract
We consider the compressible Navier-Stokes system describing the motion of a viscous fluid confined to a straight layer. We show that the weak solutions in the 3D domain converge strongly to the solution of the 2D incompressible Navier-Stokes equations (Euler equations) when the Mach number tends to zero as well as (and the viscosity goes to zero).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
InviscidThinLimit-Final.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
485.61 kB
Formato
Adobe PDF
|
485.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.