We introduce a new geometric flow of Hermitian metrics which evolves an initial metric along the second derivative of the Chern scalar curvature. The flow depends on the choice of a background metric, it always reduces to a scalar equation and preserves some special classes of Hermitian structures, such as balanced and Gauduchon metrics. We show that the flow has always a unique short-time solution and we provide a stability result when the background metric is Kähler with constant scalar curvature (cscK). The main theorem is obtained by proving a general result about stability of parabolic flows on Riemannian manifolds which is interesting in its own right and in particular implies the stability of the classical Calabi flow near cscK metrics.

A scalar Calabi-type flow in Hermitian Geometry: short-time existence and stability

Bedulli, Lucio;
2020-01-01

Abstract

We introduce a new geometric flow of Hermitian metrics which evolves an initial metric along the second derivative of the Chern scalar curvature. The flow depends on the choice of a background metric, it always reduces to a scalar equation and preserves some special classes of Hermitian structures, such as balanced and Gauduchon metrics. We show that the flow has always a unique short-time solution and we provide a stability result when the background metric is Kähler with constant scalar curvature (cscK). The main theorem is obtained by proving a general result about stability of parabolic flows on Riemannian manifolds which is interesting in its own right and in particular implies the stability of the classical Calabi flow near cscK metrics.
File in questo prodotto:
File Dimensione Formato  
BV_Calabi_SNS.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 332.14 kB
Formato Adobe PDF
332.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/148096
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact