Effects of activation of metabotropic glutamatergic receptors (mGluR) were investigated in mouse dopaminergic olfactory bulb neurons. After blockage of ionotropic receptors, focal application of glutamate or of group I/II mGluR agonist t-ACPD resulted in a depolarization, paralleled by an inward current in voltage-clamp conditions. The Group I agonist DHPG induced a depolarization, which could be largely blocked by mGluR1 antagonists. The DHPG action i) was prevented by buffering intracellular Ca2+ with BAPTA and by a phospholipase C inhibitor; ii) was not affected by the block of Ca2+ entry, and iii) was blocked by inhibitors of the Na+/Ca2+ exchanger. These observations were interpreted as a mGluR1-mediated intracellular Ca2+ release, followed by the activation of an electrogenic Na+/Ca2+ exchanger. The mGluR5 agonist CHPG induced a hyperpolarization of membrane potential, resulting in a decrease of the spontaneous firing frequency. CHPG induced i) a decrease in membrane resistance; ii) an increase in the action potential repolarization rate, and iii) an increase in the amplitude of the afterhyperpolarization. This was interpreted as a mGluR5-mediated opening of a K+ conductance. These data suggest that mGluR1 and mGluR5 play different and non-overlapping roles in the regulation of the excitability of bulbar dopaminergic neurons. © 2010 Elsevier B.V. All rights reserved.

Metabotropic glutamate receptors 1 and 5 differentially regulate bulbar dopaminergic cell function

Cifelli P.
Conceptualization
;
2010-01-01

Abstract

Effects of activation of metabotropic glutamatergic receptors (mGluR) were investigated in mouse dopaminergic olfactory bulb neurons. After blockage of ionotropic receptors, focal application of glutamate or of group I/II mGluR agonist t-ACPD resulted in a depolarization, paralleled by an inward current in voltage-clamp conditions. The Group I agonist DHPG induced a depolarization, which could be largely blocked by mGluR1 antagonists. The DHPG action i) was prevented by buffering intracellular Ca2+ with BAPTA and by a phospholipase C inhibitor; ii) was not affected by the block of Ca2+ entry, and iii) was blocked by inhibitors of the Na+/Ca2+ exchanger. These observations were interpreted as a mGluR1-mediated intracellular Ca2+ release, followed by the activation of an electrogenic Na+/Ca2+ exchanger. The mGluR5 agonist CHPG induced a hyperpolarization of membrane potential, resulting in a decrease of the spontaneous firing frequency. CHPG induced i) a decrease in membrane resistance; ii) an increase in the action potential repolarization rate, and iii) an increase in the amplitude of the afterhyperpolarization. This was interpreted as a mGluR5-mediated opening of a K+ conductance. These data suggest that mGluR1 and mGluR5 play different and non-overlapping roles in the regulation of the excitability of bulbar dopaminergic neurons. © 2010 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/149853
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact