Time–frequency analysis for non-linear and non-stationary signals is extraordinarily challenging. To capture features in these signals, it is necessary for the analysis methods to be local, adaptive and stable. In recent years, decomposition based analysis methods, such as the empirical mode decomposition (EMD) technique pioneered by Huang et al., were developed by different research groups. These methods decompose a signal into a finite number of components on which the time–frequency analysis can be applied more effectively. In this paper we consider the Iterative Filtering (IF) approach as an alternative to EMD. We provide sufficient conditions on the filters that ensure the convergence of IF applied to any L2 signal. Then we propose a new technique, the Adaptive Local Iterative Filtering (ALIF) method, which uses the IF strategy together with an adaptive and data driven filter length selection to achieve the decomposition. Furthermore we design smooth filters with compact support from solutions of Fokker–Planck equations (FP filters) that can be used within both IF and ALIF methods. These filters fulfill the derived sufficient conditions for the convergence of the IF algorithm. Numerical examples are given to demonstrate the performance and stability of IF and ALIF techniques with FP filters. In addition, in order to have a complete and truly local analysis toolbox for non-linear and non-stationary signals, we propose new definitions for the instantaneous frequency and phase which depend exclusively on local properties of a signal.

Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis

Cicone A.;
2016-01-01

Abstract

Time–frequency analysis for non-linear and non-stationary signals is extraordinarily challenging. To capture features in these signals, it is necessary for the analysis methods to be local, adaptive and stable. In recent years, decomposition based analysis methods, such as the empirical mode decomposition (EMD) technique pioneered by Huang et al., were developed by different research groups. These methods decompose a signal into a finite number of components on which the time–frequency analysis can be applied more effectively. In this paper we consider the Iterative Filtering (IF) approach as an alternative to EMD. We provide sufficient conditions on the filters that ensure the convergence of IF applied to any L2 signal. Then we propose a new technique, the Adaptive Local Iterative Filtering (ALIF) method, which uses the IF strategy together with an adaptive and data driven filter length selection to achieve the decomposition. Furthermore we design smooth filters with compact support from solutions of Fokker–Planck equations (FP filters) that can be used within both IF and ALIF methods. These filters fulfill the derived sufficient conditions for the convergence of the IF algorithm. Numerical examples are given to demonstrate the performance and stability of IF and ALIF techniques with FP filters. In addition, in order to have a complete and truly local analysis toolbox for non-linear and non-stationary signals, we propose new definitions for the instantaneous frequency and phase which depend exclusively on local properties of a signal.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/150212
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 174
  • ???jsp.display-item.citation.isi??? 141
social impact