The social parasitic beetle Paussus favieri (Coleoptera, Carabidae, Paussini) performs different types of stridulations, which selectively mimic those emitted by different ant castes of its host Pheidole pallidula (Hymenoptera, Formicidae, Myrmicinae). However, the significance of this acoustical mimicry for the success of the parasitic strategy and the behaviors elicited in the host ants by stridulations was unknown. We reared Paussus favieri in Pheidole pallidula colonies and filmed their interacting behaviors. We analyzed in slow motion the behavior of ants near a stridulating beetle. We analyzed separately trains of pulse (Pa + Pb, produced by repeated rubbings) and single pulse (Pc, produced by a single rubbing) of stridulations, clearly recognizable from the shaking up and down of the beetle hind legs, and associated them with different ant responses. The full repertoire of sounds produced by P. favieri elicited benevolent responses both in workers and soldiers. We found that different signals elicit different (sometimes multiple) behaviors in ants, with different frequency in the two ant castes. However, Pc (alone or in conjunction with other types of pulses) appears to be the type of acoustic signal mostly responsible for all recorded behaviors. These results indicate that the acoustic channel plays a pivotal role in the host–parasite interaction. Finding that a parasite uses the acoustical channel so intensively, and in such a complicated way to trigger ant behaviors, indicates that acoustic signals may be more important in ant societies than commonly recognized.
Interactional behaviors of the parasitic beetle Paussus favieri with its ant host Pheidole pallidula: the mimetic role of the acoustical signals
Fattorini S.;
2020-01-01
Abstract
The social parasitic beetle Paussus favieri (Coleoptera, Carabidae, Paussini) performs different types of stridulations, which selectively mimic those emitted by different ant castes of its host Pheidole pallidula (Hymenoptera, Formicidae, Myrmicinae). However, the significance of this acoustical mimicry for the success of the parasitic strategy and the behaviors elicited in the host ants by stridulations was unknown. We reared Paussus favieri in Pheidole pallidula colonies and filmed their interacting behaviors. We analyzed in slow motion the behavior of ants near a stridulating beetle. We analyzed separately trains of pulse (Pa + Pb, produced by repeated rubbings) and single pulse (Pc, produced by a single rubbing) of stridulations, clearly recognizable from the shaking up and down of the beetle hind legs, and associated them with different ant responses. The full repertoire of sounds produced by P. favieri elicited benevolent responses both in workers and soldiers. We found that different signals elicit different (sometimes multiple) behaviors in ants, with different frequency in the two ant castes. However, Pc (alone or in conjunction with other types of pulses) appears to be the type of acoustic signal mostly responsible for all recorded behaviors. These results indicate that the acoustic channel plays a pivotal role in the host–parasite interaction. Finding that a parasite uses the acoustical channel so intensively, and in such a complicated way to trigger ant behaviors, indicates that acoustic signals may be more important in ant societies than commonly recognized.File | Dimensione | Formato | |
---|---|---|---|
213_16711715.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
376.31 kB
Formato
Adobe PDF
|
376.31 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.