We discuss the Lagrangian property and the conservation of the kinetic energy for solutions of the 2D incompressible Euler equations. Existence of Lagrangian solutions is known when the initial vorticity is in Lp with 1 ≤ p≤ ∞, and if p≥ 3 / 2 , all weak solutions are conservative. In this work, we prove that solutions obtained via the vortex method are Lagrangian, and that they are conservative if p> 1.

Weak Solutions Obtained by the Vortex Method for the 2D Euler Equations are Lagrangian and Conserve the Energy

Ciampa G.;Spirito S.
2020

Abstract

We discuss the Lagrangian property and the conservation of the kinetic energy for solutions of the 2D incompressible Euler equations. Existence of Lagrangian solutions is known when the initial vorticity is in Lp with 1 ≤ p≤ ∞, and if p≥ 3 / 2 , all weak solutions are conservative. In this work, we prove that solutions obtained via the vortex method are Lagrangian, and that they are conservative if p> 1.
File in questo prodotto:
File Dimensione Formato  
1905.09720.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 315.38 kB
Formato Adobe PDF
315.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/150820
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact