In this paper we study a class of solutions of the Boltzmann equation which have the form $f(x,v,t) = g(v-L(t)x,t)$ where $L(t)=A(I+tA)-1$ with the matrix $A$ describing a shear flow or a dilatation or a combination of both. These solutions are known as homoenergetic solutions. We prove the existence of homoenergetic solutions for a large class of initial data. For different choices for the matrix A and for different homogeneities of the collision kernel, we characterize the long time asymptotics of the velocity distribution for the corresponding homoenergetic solutions. For a large class of choices of A we then prove rigorously, in the case of Maxwell molecules, the existence of self-similar solutions of the Boltzmann equation. The latter are non Maxwellian velocity distributions and describe far-from-equilibrium flows. For Maxwell molecules we obtain exact formulas for the H-function for some of these flows. These formulas show that in some cases, despite being very far from equilibrium, the relationship between density, temperature and entropy is exactly the same as in the equilibrium case. We make conjectures about the asymptotics of homoenergetic solutions that do not have self-similar profiles.

Self-Similar Profiles for Homoenergetic Solutions of the Boltzmann Equation: Particle Velocity Distribution and Entropy

Nota A.
;
2019-01-01

Abstract

In this paper we study a class of solutions of the Boltzmann equation which have the form $f(x,v,t) = g(v-L(t)x,t)$ where $L(t)=A(I+tA)-1$ with the matrix $A$ describing a shear flow or a dilatation or a combination of both. These solutions are known as homoenergetic solutions. We prove the existence of homoenergetic solutions for a large class of initial data. For different choices for the matrix A and for different homogeneities of the collision kernel, we characterize the long time asymptotics of the velocity distribution for the corresponding homoenergetic solutions. For a large class of choices of A we then prove rigorously, in the case of Maxwell molecules, the existence of self-similar solutions of the Boltzmann equation. The latter are non Maxwellian velocity distributions and describe far-from-equilibrium flows. For Maxwell molecules we obtain exact formulas for the H-function for some of these flows. These formulas show that in some cases, despite being very far from equilibrium, the relationship between density, temperature and entropy is exactly the same as in the equilibrium case. We make conjectures about the asymptotics of homoenergetic solutions that do not have self-similar profiles.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/151260
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact